| | | | | _ | |-----------------------|-------------|-----------|--------------|----| | | CLASSIFICA | - O4: O6 | * LUIC 3 A C | | | \>{'' K . Y | (7/3/5/5 | HICKNI UP | | := | 2b. DECLASSIFICATION , DOWNGRADING #### AD-A197 089 | EYORT POCUMENTATION PAGE | A Re | FILE | COPY | |--------------------------|------|------|------| 16. RESTRICTIVE MARKINGS LECTE! UL 2 2 1988 DISTRIBUTION / AVAILABILITY OF REPORT APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED 4. PERFORMING ORGANIZATION REPORT NUMBER(S) ONR TECHNICAL REPORT #88-4 5. MONITORING ORGANIZATION REPORT NUMBER(S) 6a. NAME OF PERFORMING ORGANIZATION WASHINGTON UNIVERSITY 66. OFFICE SYMBOL (If applicable) 74. NAME OF MONITORING ORGANIZATION OFFICE OF NAVAL RESEARCH (CODE 1142PT) 60 S. Euclid, Box 8111, Neurology, ST. LOUIS, MO 63110 7b. ADDRESS (City, State, and ZIP Code) PERSONNEL & TRAINING RESEARCH PROGRAMS 800 NORTH OUINCY STREET ARLINGTON, VA 22217-5000 Sa. NAME OF FUNDING / SPONSORING ORGANIZATION 86. OFFICE SYMBOL (If applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER SC ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. 61153N PROJECT NO. RR04206 TASK NO ACCESSION NO RR04206-0A NR442a554 11 TITLE (Include Security Classification) Is Word Recognition automatic? - A cognitive-anatomical approach. 12. PERSONAL AUTHOR(S) Michael I. Posner, Jennifer Sandson, Meena Dhawan & Gordon L. Shulman 13a. TYPE OF REPORT TECHNICAL 136. TIME COVERED FROM 01MAY88 TO01MAY89 14 DATE OF REPORT (Year, Month, Day) May 30. 1988 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION | COSATI CODES | | | | | |--------------|------------|--|--|--| | GROUP | -SUB-GROUP | | | | | 10 | | | | | | | | | | | 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) It is generally accepted that two tasks will interfere to the extent that they require attention or involve shared non-attentional processing systems. We used anatomical data from studies of blood flow during lexical processing (Petersen, Fox, Posner, Mintun & Raichle, 1988) to generate hypotheses about the conditions under which an autitory shadowing task would interfere with three common visual priming tasks. Data from blood flow studies suggest that visual priming involves automatic activation of a set of posterior visual areas that are not activated by auditory language processing. In accord with this account, we found no reduction in visual priming during simultaneous shadowing. Cueing covert visual attention involves posterior parietal areas that are not involved in auditory shadowing. However, these posterior areas are part of a unified (over) | 10 DISTRIBUTION: AVAILABILITY OF ABSTRACT | 21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED | | |---|---|-----------------------| | Michael I. Posner | 22b. TELEPHONE (Include Area Code) 22c. OF (314) 362-3317 ONR | FICE SYMBOL
1142PT | DD FORM 1473, 34 MAR 33 APR edition may be used until exhausted All other editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE #### 19. (ABSTRACT continued) attention system. In accord with this idea, cueing covert attention is greatly affected by simultaneous auditory shadowing. Blood flow data indicate that semantic priming involves both an anterior attention system and an area of lateral frontal cortex. Both these areas can also be activated by auditory information. Our results suggest that semantic priming is greatly influenced by strategic factors that do not affect visual priming and is often reduced by auditory shadowing. The interaction of semantic priming with auditory shadowing depends little on the semantic character of the shadowing task (text versus nonsense) and thus appears to be large attentional. We argue that a combined anatomical-cognitive approach provides a means for disambiguating the conditions under which interference between cognitive operations is likely to occur. Is Word Recognition automatic? A cognitive-anatomical approach 1 Michael I. Posner, Jennifer Sandson, Meena Dhawan and Gordon L. Shulman ONR Technical Report 88-4 Research sponsored by: Personnel and Training Research Program Psychological Science Division, Office of Naval Research Under Control Number: N00014-86-K-0289 Contract Authority Number: NR-442a554 Reproduction in whole or part is permitted for any purpose of the United States Government Is word recognition automatic? A cognitive-anatomical approach¹ Michael I. Posner, *Jennifer Sandson, ** Meena Dhawan and Gordon L. Shulman - * Now at the University of Oregon, Department of Psychology Eugene, Oregon 97403 Reprints are available at this address. - ** Now at the University of Maryland School of Medicine Department of Neurology Baltimore, MD 20201 #### Abstract It is generally accepted that two tasks will interfere to the extent that they require attention or involve shared non-attentional processing systems. We used anatomical data from studies of blood flow during lexical processing (Petersen, Fox, Posner, Mintun & Raichle, 1988) to generate hypotheses about the conditions under which an auditory shadowing task would interfere with three common visual priming tasks. Data from blood flow studies suggest that visual priming involves automatic activation of a set of posterior visual areas that are not activated by auditory language processing. In accord with this account, we found no reduction in visual priming during simultaneous shadowing. Cueing covert visual attention involves posterior parietal areas that are not involved in auditory shadowing. However, these posterior areas are part of a unified attention system. In accord with this idea, cueing covert attention is greatly affected by simultaneous auditory shadowing. Blood flow data indicate that semantic priming involves both an anterior attention system and an area of lateral frontal cortex. Both these areas can be also be activated by auditory information. Our results suggest that semantic priming is greatly influenced by strategic factors that do not affect visual priming and is often reduced by auditory shadowing. The interaction of semantic priming with auditory shadowing depends little on the semantic character of the shadowing task (text versus nonsense) and thus appears to be largely attentional. We argue that a combined anatomical-cognitive approach provides a means for disambiguating the conditions under which interference between cognitive operations is likely to occur. | sion For | | |-----------|----------------------------------| | GRALI | | | TAB | <u>ٿ</u> | | . ಚಾರಕರೆ | <u>-</u> j | | Minnet on | | | | | | | | | ibution/ | | | indility | Codes | | as Lerk. | d/or | | Specia | 1 | | ! ! | | | | | | 1 1 | | | | ibution/
Invility
Aveil Ap | There is a long history in experimental psychology of using simultaneous dual task performance to determine the extent to which two tasks share limited cognitive resources (Kinsbourne & Hicks, 1978; Posner, 1978; 1982). The logic underlying dual task paradigms is as follows: (1) tasks will interfere to the extent that they require attention and (2) tasks will interfere when their component operations are similar. The first criterion suggests that two poorly learned tasks will interfere irrespective of content. The second suggests that even highly overlearned tasks will interfere when their content is related. Both of these criteria can be subsumed under a single anatomical proposition (Kinsbourne & Hicks, 1978). That is, tasks will interfere to the extent that their operations occur within a single or heavily interconnected anatomical system. If selective attention is performed by an integrated system, it is clear that tasks requiring this system will interfere. If processing of similar content is done in shared anatomical areas, one would also expect more interference when contents are related. A major contribution of cognitive science has been the development of paradigms which a low for the study of isolated internal operations rather than entire tasks. One such paradigm uses an initial stimulus as a prime to improve one or more aspects of the processing of a second target stimulus. Since the subject does not have to respond to the first stimulus, such priming may serve to isolate those components that are shared between prime and target. Thus, if the word 'doctor' is a prime for the target 'nurse', it is thought to improve target processing by activating appropriate areas of semantic memory. If the word 'doctor' is a prime for the visually identical stimulus 'doctor', target processing could also be facilitated through shared visual, phonological and semantic activations. The mechanisms of priming are unresolved. One controversy concerns the extent to which priming effects are attentional or automatic (Neely, 1977). A more recent controversy involves the degree to which facilitation results from mediating search strategies instead of the activation of common representations (Ratcliff & McKoon, in press). Despite these difficulties we try to use priming as a tool for isolating particular operations. The results of these efforts can also be used to evaluate the assumptions on which they are based. Advances in imaging technology have recently yielded evidence concerning the anatomical systems activated by visual words in healthy subjects (Petersen et al., 1988). These studies have relied upon changes in blood flow when performing a series of three common lexical tasks, each differing from the next by a single processing operation (e.g. passive word presentation followed by word repetition). The operations involved in the tasks are similar to those in a
typical priming paradigm. The results of the study are summarized in Figure 1. #### INSERT FIG. 1 We used this anatomical data to generate hypotheses about the conditions under which an auditory/verbal task requiring attention would interfere with three common visual priming tasks. The three tasks are visual priming of a word (e.g. doctor - doctor), semantic priming a word (e.g. nurse - doctor), and cueing of visual spatial attention (e.g. a cue to attend to the left of the screen followed by a target to the left for a valid trial or to the right for an invalid trial). _555553_22722**26**_285553_222333 The anatomical basis of the shared activations between cue and target in these three tasks can be inferred from Fig. 1. For example, the area most likely to mediate priming of visual features is the ventral occipital lobe (see areas called visual word forms, Fig. 1). Petersen, Fox, Miezin & Raichle (1988) suggest that these areas form a network for the development of visual word forms from visual features. We hypothesize that word primes activate these areas and that an identical prime will reactivate the same pathway within the network. In the PET study activation of the ventral occipital lobe was very similar, irrespective of whether subjects responded actively or passively to the input word, indicating that the areas are not part of the attentional system. The PET study suggests that semantic tasks activate two additional areas (see semantic and anterior attention areas, Fig. 1). One of these is unique to semantic processing of language stimuli, whether visual or auditory, and lies in the left inferior prefrontal cortex. The second is in the anterior cingulate and appears related to the person's attention to the word. We believe semantic priming depends upon the prime activating items in the semantic network. If so, an auditory task might reduce facilitation either because it too draws upon the semantic network (e.g. story shadowing) or because it uses a shared attentional system. Finally, a visual spatial cue appears to improve processing of a target because it draws attention to the target location (Posner & Presti, 1987). Data from patients with focal lesions suggest that this cueing effect depends upon two cortical areas. One of these is posterior and unique to vision (area 7) (see posterior attention, Fig. 1) and the other anterior is involved in both visual space and language processing (Posner & Inhoff, 1987). Our best candidate for the anterior area is the anterior cingulate described above. The reasons are twofold. First, we know that patients and normals who are processing language information show a reduced visual spatial cueing effect. Second, the only attentional area we have found in PET studies of word processing is in the anterior cingulate (Petersen, et al, 1988). It is known from studies of monkey anatomy that the anterior cingulate is one of many areas receiving input from both the posterior parietal lobe and the lateral prefrontal area (Goldman-Rakic, 1988). These two information sources are interdigitated within the anterior cingulate. Thus we assume that the anterior cingulate is at least a part of the interaction between visual spatial and language attention. How should these anatomical data influence cognitive models of divided attention? Suppose we subsume both cognitive criteria listed in our first paragraph under the common anatomical principle. Two mental operations will interfere when they require the same or highly connected anatomical areas. Thus all tasks that require attention will interfere because attention is a system of anatomically interconnected areas. For visual space this involves both the parietal lobe and anterior cingulate (among known areas) while for language it involves the anterior cingulate. The predictions for physical priming of identical stimuli are straightforward. The operations involved in visual priming should not be affected by auditory shadowing as visual priming involves only the visual word form system and auditory shadowing involves the more anterior region surrounded by dotted lines in Figure 1. The predictions for semantic priming are much more complex. Potentially semantic priming and auditory shadowing have in common both the left inferior frontal area and the midline attentional area. However, there is evidence in cognition that a portion of semantic priming can occur without attention (e.g. Neely, 1977). Thus it is possible that semantic priming will not always use the attentional system required for shadowing. Second, shadowing may be isolated from semantics under some circumstances. A clear case for such isolation ought to be the repetition of nonsense words. PET data show little evidence of activation of the semantic area even when meaningful words are repeated (Petersen, et al, 1988). In this paper we attempt to illustrate this joint anatomical-cognitive approach to understanding interference between tasks. The first section of the paper deals with visual priming under a variety of conditions. The second section deals with attentional cueing and the final section with semantic priming. #### Visual Priming #### Prototype Experiment Visual and semantic priming stimuli were run within mixed blocks. The method for a prototype priming study (Experiment 1 in Table 6) is presented below. Variations in priming and shadowing stimuli were introduced throughout and will be addressed as they are encountered. Subjects were always native English speakers and were recruited from advertisements in local papers. #### Method Stimuli: Word list stimuli for Experiment 1 consisted of semantic, identity, unrelated and nonword pairs. Semantic pairs included: 20 goodinstance category pairs (e.g. insect - fly); 20 poor-instance category pairs (e.g. ship - ferry); 20 highly associated pairs (e.g. salt - pepper) and 20 less highly associated pairs (e.g. wish - hope). The good and poor instance category pairs were selected on the basis of the Battig and Montaque (1969) norms for instance dominance. Good instance targets had a mean category dominance rating of 365.8, as compared to 12.6 for the poor instance targets (p < .001). High and lower association pairs were obtained from established association norms (Palermo & Jenkins, 1964). High association pairs had a mean rating of 505.4 while the mean rating for the low association pairs was 98.6 (p < .001). Although frequency of occurrence (Kucera & Francis, 1967) was not significantly different across association pairs, high dominance targets had a significantly higher mean frequency than low dominance pairs. There were 40 identity pairs (e.g. train - train), 80 unrelated pairs (e.g. function - lace) and 200 nonword pairs (e.g. route - vorpre). In order to ensure that the effects of prime type would not be attributable to differences in frequency, unrelated pairs were constructed so as to contain the same target words as the categorical and associate pairs. Primes for the unrelated pairs did not differ in frequency from those for the semantically related pairs. Nonword and identity primes were also selected so as not to differ in frequency from those in the unrelated pairs. In order to meet requirements for disk space, the 400 pair stimulus list was divided into two parts. One half of the items in each pair type were randomly assigned to each list. The auditory tape used in the shadowing conditions was a reading by Gore Vidal of his novel <u>Abraham Lincoln</u>. Procedure: Subjects received both word lists first in a no-shadowing and then in a shadowing condition. Each list was presented in a different random order for every subject. List order was counterbalanced such that one half the subjects received each list first. Target stimuli were presented either a short or a long interval after the onset of the prime (SOA). SOA was randomly assigned to each item at every presentation. Prime stimuli were always initiated 500 msec after the onset of a fixation cross and remained on the screen for 300 msec. Target stimuli were initiated 400 msec after the onset of the prime in the short SOA condition and 900 msec after the onset of the prime in the long SOA condition. The fixation cross remained present throughout the duration of each trial. Primes appeared above and targets below the cross. Subjects were instructed to fixate on the central cross and to attend to the second stimulus in each trial. Their task was to determine whether that letter string was or was not a real English word. If the target was a real word, the correct response was to press the left key on the response panel with the index of the right hand (or the middle finger of the left hand). Nonword responses were registered by pressing the right key with the middle (index) finger of the same (dominant) hand. Subsequent trials were automatically triggered through the response key. The shadowing task involved repetition of the auditory tape, allowing for minimal lag between the tape and the subject. Subjects practiced shadowing until they felt comfortable with the task. They were then instructed to again perform the lexical decision task while maintaining the speed and accuracy of their shadowing. No formal measure of shadowing performance was obtained. Response accuracy and reaction times for the lexical decision task were stored by computer for later analysis. #### Results In this section we consider the results for visual primes and unrelated words from Experiment 1 and the subsequent priming studies. In section 3 we will consider the data obtained for various forms of semantic relationship. Table 1 shows the means of the median RTs for the visually primed targets and targets following unrelated words when the lexical decision task is performed by itself (focal) and when it is time shared with shadowing the Lincoln story (divided). An analysis of variance of these values shows a significant priming effect, F(1,11)=6.2, p<.02 and no significant effect of the
shadowing on the amount of visual priming, F=1.08. #### INSERT TABLE 1 #### Extension Experiments We have now run the visual priming condition as a part of six classification experiments (see Table 6 for a summary of the different tasks). It has frequently been noted that lexical decision tasks often allow the presence of a relationship between prime and target words to confound the lexicality judgment (Neely, Keele & Ross, 1986). This confound arises when the presence of such a relationship means that the target string must be a word. This type of confound might be particularly important for visual identity priming where the prime-target relation is especially obvious. We used two different techniques (Experiments 3 and 6) to reduce the use of this type of strategy in our studies. In Experiment 3 we added identical non-word pairs, thus precluding classifications based solely on a physical match. The amount of visual priming in this study is displayed in Table 2 (columns 2 and 3) for both word and non-word pairs. These data can be compared with column 1 which represents a straight replication of the prototype experiment with its confounding of relatedness and lexicality. It is clear that the visual priming is the same in the replication experiment as in the original and the new condition also gives essentially the same results. Inspection of Table 2 also reveals that visual priming of non-words failed to produce significant facilitation in either the focal or divided conditions. Nonword visual matches, however, were only half as frequent as word visual matches. Although there are several possible explanations for the absence of visual nonword priming, the result further supports the idea that visual priming is somehow related to the lexicality of the target string and cannot be explained through a matching strategy. A second way to eliminate the confound between relatedness and classification is to change from a lexical decision task to a semantic classification task. In Experiment 6 subjects were required to classify animal names into the categories 'predatory' or 'non-predatory'. The same related prime could thus occur for targets in both categories. As can be seen in column 4 of Table 2, the degree of physical priming was not reduced in this task. INSERT TABLE 2 Type of Shadowing We examined two forms of shadowing in order to establish the generality of the results obtained so far. The experiments were similar to our prototype experiment except that the subject either did the visual task alone, shadowed a story, or a list of nonsense words. The basic idea was to vary the degree of semantic content of the shadowed message. In Table 3 we look at the amount of improvement from priming as a function of the type of shadowing. The story shadowing data is the mean of three experiments (Expts. 1, 2 & 3) and is compared with the nonsense shadowing values from Experiment 3. There is no effect of type of shadowing on the amount of visual priming. INSERT TABLE 3 #### Discussion It is clear that the facilitation due to visual priming is not reduced by performance of a secondary shadowing task. Significant visual priming was obtained over a range of primary and secondary task conditions. particular, two lines of evidence suggest that visual priming does not depend upon the strategic use of a prime-target relation to indicate a "word" response. First, visual priming was not reduced by the addition (Experiment 3) of non-word pairs with an identity relation. Second, visual priming remained intact when the prime-target relation was rendered completely orthogonal to the required judgment (semantic classification task - Experiment 6). It thus seems that the prime itself must somehow affect the classification made to the target. One possible mechanism for this might involve an implicit classification of the prime. In cases of a prime-target match, the already selected response would simply be executed. This strategy, however, should apply equally to word and non-word targets and the nonword identity pairs in Experiment 3 (table 2) did not result in priming. The means by which a prime facilitates target classification thus remains unsolved. As a whole these findings suggest that visual priming occurs as a result of activating a pathway in the ventral occipital lobe which is then reactivated more quickly when the target occurs (see Fig. 1). If the prime effect was mediated by semantics, one would expect to find clear interference from story condition of the divided attention task (see page). It also seems unlikely that the prime effect could be based on the phonological code of the word name, as PET results suggest this code is not activated unless the subject follows a very deliberate strategy that would not be available under dual task conditions (Posner, Petersen, Fox & Raichle, in press). Moreover, mediation of visual priming via a phonological route would surely be affected by the dual task. While visual primes could have their influence on any level, the combined anatomical-cognitive approach suggest that they operate specifically on the visual representation. We thus conclude that activating the visual code is not affected by the dual task. Can we go a step further and conclude that the visual code activation is automatic? One could argue that visual code formation involves a kind of attention not used for auditory shadowing. The most likely candidate would be the visual spatial attention system located in the parietal lobe known to be important in some forms of feature integration. However, we can reject this possibility on several grounds. First, PET studies (Petersen, et al, 1988) show that the visual code is activated passively even when the subject is instructed not to attend to it. There is no evidence of activation in the parietal lobe under these conditions. Second, patients with lesions of the right parietal lobe who neglect the left side of many objects, including letter strings, show little or no loss for reading visual words, even when they occupy the same visual angle as the letter string (Sieroff, Pollatsek & Posner, 1988). Third, normal subjects cued to the right side of a letter string show a marked increase in errors when report the first two letters, much like the right parietal patients, but they do not have this problem with words (Sieroff & Posner, 1988). These findings show that reading a single foveally-centered word activates the visual code without automatically using the visual attention system. Thus for both cueing and divided attention methods, we find true automaticity of visual code activation under the conditions of the present experiment. Our findings support the notion that mental operations will produce no interference when they use anatomically distinct neural systems. #### Visual Spatial Attention The cognitive processes underlying visual identity priming are relatively simple, requiring only the activation of lexical codes. It is possible that it is the simplicity of the task rather than the anatomy that allows for time sharing with shadowing. It was thus important to look for interference from the auditory shadowing task on an equally simple primary task previously shown to activate the attentional system. One such task involves shifting attention to a cued location (Posner & Presti, 1987). We use a visual cue to draw the subject's attention to a particular spatial location. If the target occurs at that location response times will be faster than if it occurs at another location. Just as a comparison between identical and unrelated primes provides a measure of priming the visual code, so the difference between response times to cued and uncued locations provides a measure of the efficiency of a covert shift of attention to the cue. Studies of patients with focal lesions suggest that the covert shifts of visual spatial attention brought about by visual cueing are performed by activations of the posterior parietal lobe (see Figure 1). PET studies confirm the importance of this area in attending to visual locations (Petersen, Fox, Miezin & Raichle, 1988). Unlike the ventral areas involved in visual word forms, the parietal area is part of a more general attention system, with both anterior and posterior components, that is also involved in attending to language (Posner, in press). We would expect that the shadowing task would involve the anterior attentional components of this system and thus produce interference with the covert shift of attention to the cue. Previously in connection with studies of schizophrenia (Posner, Early, Reiman, Pardo & Dhawan, in press), we ran a control condition in which normal subjects performed a visual spatial attention task either alone or together with shadowing the Lincoln story. Because the previous experiment is reported only very briefly and for such a different purpose, we briefly describe the method and results below. #### Method In this experiment twenty normal subjects were run in three blocks of covert spatial orienting (see Posner & Presti, 1987 for a full description of the task). On each trial the subject was to respond as quickly as possible to a one degree target that occurred within one of two boxes located five degrees to the left or right of a fixation cross. We will consider two types of trials, valid and invalid. Within each block, there were 96 valid trials in which the target occurred within the cued box and 24 invalid trials in which the target occurred within the box on the opposite side of the cue. On the first and third block of spatial orienting trials the subjects shadowed the Lincoln story as described in Experiment 1. On the second block they performed the spatial orienting task alone. #### Results The results for a 100 and 800 msec cue to target intervals are shown in Table 4. We examined the 100 msec interval separately because this cue to target interval is too short for any eye movements. An ANOVA of the data shown in
Table 4 produces a significant effect of attention condition (focal vs. divided), F (1,19) = 26, p < .001; cue condition (valid vs. invalid) F (1,19) = 86, p < .001 and an attention by cue by visual field interaction F (1,19) = 5.5, p < .03. The interaction with visual field indicates that there is no validity effect (advantage of valid over invalid RTs) for left visual field targets in the divided attention condition. The interaction with visual field is not present in the 800 msec cue to target interval data. #### Discussion Two features of these data are of interest. First, unlike visual priming, we find clear interference from auditory shadowing on the effectiveness of the cue. The advantage of validly cued targets over invalid ones is 42 millisec in the focal condition and 22 millisec in the divided condition. Second, there is a strong laterality effect. When a cue is in the right visual field (left hemisphere), followed by a target in the left visual field (right hemisphere), the shadowing task produces less interference than in any other condition. We believe that right visual field cues fail to attract attention when shadowing and thus produce a reduced validity effect in the divided attention conditions. The data show that shadowing affects the orienting of visual spatial attention even though the posterior parietal area responsible for this form of attention has been shown not to be activated by repetition of single words. We believe that this interference occurs because the auditory shadowing task ties up the anterior attentional system (see Figure 1) which, as shown previously, controls the posterior visual spatial orienting system (Posner, Inhoff, Friedrich & Cohen, 1987). Performance of the secondary task delays the command signal from the anterior to the posterior attention system and thus slows orienting to the cue. In agreement with the idea of a delayed command signal, we find that longer cue to target intervals (800 millisec), equalize the validity effects for focal and divided attention conditions. The powerful difference between shadowing effects on cues to the right and left hemisphere has not been previously reported. Apparently the divided attention condition delays the ability of cues to fully engage attention only when they occur in RVF (go directly to the left hemisphere). For this reason, invalid targets in the left visual field do not suffer as greatly from the secondary task as the other three conditions. This finding represents the first clear evidence that the anterior attention system is lateralized in organization. The remarkable specificity of the interference produced by shadowing to the operations of one side of the anterior attention system is persuasive evidence that divided attention is not a general phenomenon but extremely sensitive to the exact details of the anatomical interconnections. Thus a very simple mental operation in the ventral occipital lobe shows no interference from the shadowing task (exp. 1), while an equally simple cueing operation within the attention system shows dramatic interference in just one half of the visual field. STATESTACK STATESTAN STATESTAN STATESTAN STATESTAND STATES #### Semantic Priming WELLERY ZEZZELI POSSODI ZEZZELE KECKEK PLASSODI POSSEZE PRASZE PRASZEZ Visual and semantic priming stimuli were run in mixed blocks as described for the prototype experiment. The RT for various semantic relationships and unrelated primes are shown in Table 5. Two facts are clear from the table and are confirmed by statistical analysis. related trials are faster than unrelated trials (mean 48 msec). shows a significant relatedness effect F(1,11) = 5.4, p < .05). of relatedness is longest for highly associated pairs, next for low association pairs and is lacking for poor members of prime1 ategories. Both the size and systematic nature of these activations suggest that priming occurred in the focal condition. The large percentage of semantically and physically related pairs was probably sufficiently salient to encourage the conscious or unconscious use of same type of strategy in lexical decision. One such strategy, which often produces large priming effects, is the active prediction of the target on the basis of the prime. In accordance with this possibility, we obtain a large reduction of the priming effect in the divided attention condition. There is no significant priming under divided attention conditions except for the high association The interaction between attention condition and semantic priming is significant F (1,11) = 8.7, p < .02. Thus shadowing tends to reduce or abolish semantic priming while not reducing visual priming under identical circumstances within the same experiment (see Table 1). The error rates in this study are small but they tend to follow the pattern of the reaction time data. #### INSERT TABLE 5 The six experiments displayed in Table 6 all yielded significant visual priming of words. Significant semantic priming was obtained in all five lexical decision tasks but not in the one semantic classification task. In three of the experiments, the priming effect was reduced by some form of divided attention. This was significant in two studies. In two other lexical decision studies, there was a significant priming effect (although small) that was not affected by shadowing (see Table 7). #### INSERT TABLES 6,7 Our studies were not designed to determine the exact factors responsible for the extent of semantic priming. As indicated by a vast and complex literature, semantic priming is influenced by a number of strategic factors that include percentage of related primes, interval between prime and target, backward association between target and prime, and many others. These factors were not controlled in our experiments and appear to be responsible for the variability of semantic priming in our data. Despite this, significant priming was obtained for all focal tasks except semantic classification. This may be due to the greater difficulty of this particular semantic classification task or to its success in eliminating the presence or absence of a prime-target relationship as a strategic factor. The shift from lexical decision to semantic classification did not, however, reduce visual priming. Moreover, semantic priming during lexical decision was not greatly influenced by the percentage or type of visual identity pairs in the stimulus list. The presence of nonword identity primes, intended to reduce the confound between the presence of a primetarget relationship and a "word" decision, also failed to eliminate semantic priming. Usually the factors that influence semantic priming are said to be of two types, automatic and strategic (Posner & Snyder, 1975). The larger priming effects of Exp. 1 and 2 may reflect greater use of strategic factors. Shadowing reduced semantic priming significantly in both studies. In contrast, both priming and divided attention had smaller effects in Exp. 3-5. We conclude that divided attention can reduce semantic priming. However, there may be a component of the priming that is unaffected by the divided attention task and thus could be said to be automatic. If we examine Exp. 3, 4 & 5 where different forms of shadowing were used, we see that nonsense shadowing has as large or larger an affect on the priming task as story shadowing. This suggests that it is not the semantic character of the secondary task, but rather its use of attention that influences the degree of semantic priming. We know from PET data that repeating meaningful words activates the anterior attention system, but we have no evidence that it affects the left lateralized semantic system. Thus we cannot be sure that story shadowing actually has an effect on the semantic area. Subjects were, however, aware of the meaning of the text and able to answer questions about it asked after the experiments. In short, semantic priming is like visual spatial attention and unlike visual priming in involving the attention system. We expect there may be a component of semantic priming that is automatic and is not affected by shadowing, but we have not yet demonstrated that clearly. #### Conclusion We have attempted in this paper to lay out a combined cognitive and anatomical approach to aspects of visual word recognition. We used cognitive techniques (priming) to obtain pure measures of visual activation, visual attention and semantic activation. We have shown that the visual activation component is simply not influenced by a difficult divided attention task that is perfectly adequate to provide interference with overall reaction time, visual spatial orienting and aspects of semantics. This seems to be strong confirmation that the visual word form activation is "automatic". First, we have shown elsewhere that it is automatic in the sense that it is unaffected by lesions or activation of the posterior attention system (Sieroff, et al, 1988a,b). Second, we have shown that it is automatic in the sense that the degree of blood flow in this system is not affected by the subject's passive versus active task state (Petersen, et al, 1988). Third, in this paper we show that it is automatic in that it perfectly time shares with the divided attention task. These findings support the assumption that an operation that occurs automatically in an area of the brain not used by the secondary task will show no interference. These data indicate that visual word forms can be computed even though the person is engaged in other activity and are compatible with many findings in the reading literature (Rayner & Pollatsek, 1987). In contrast to the results for visual priming, visual attention is greatly affected by simultaneous shadowing. This occurs despite the fact that cueing appears on the surface to be just as simple as visual priming and clearly involves no language. The clear interference of shadowing on the speed of visual orienting is remarkable evidence in favor of a
unified attention system which in different anatomical areas involves visual spatial (posterior) and language (anterior) information. The interaction betwen the two support the anatomical (Goldman-Rakic, 1988) and cognitive (Posner, Inhoff, et al, 1987) evidence that the anterior system relates prefrontal (semantic) and parietal (visual spatial) information. Moreover, the lateralized affects of shadowing on visual cueing suggest that the anterior attention system is lateralized. It is consistent with the idea that the left anterior cingulate provides information to the left parietal lobe needed to engage attention to a cue in the right visual field. One of the most remarkable aspects of these data is the clear separation between semantic and visual priming. Although the two prime types were mixed within the same block and task, they produced quite different patterns of facilitation. This cognitive result is compatible with several lines of anatomical evidence that visual word forms and semantic information are processed in separate areas. First, as discussed previously, our PET results (Petersen, et al, 1988) show visual word forms to activate an occipital region and semantic processing to activate a region in the frontal lobe. Second, event-related potential data (Rugg, 1987) show a posterior distribution for visual priming and an anterior distribution for semantic priming. From a cognitive perspective, anatomical separation of initial visual word form and semantic computations does not necessarily imply that visual and semantic priming occur in those same regions. Afterall, a visual identity prime also has a semantic identity. The role of semantic analysis in lexical decision, both whether it occurs at all and if it does at what stage in processing, remains controversial. While the use of pronounceable nonwords has been shown to encourage semantic analysis (James, 1975), it remains possible that other information is important in semantic priming. Our data, however, strongly suggest that the two forms of priming have a separate anatomical as well as a separate functional basis. This result augers well for the use of these two forms of priming as a tool for assaying the relative intactness of the ventral occipital lobe and prefrontal cortex in patients with various psychiatric and neurological disorders. Our results for semantic priming are not as definitive as for visual priming although we see no reason that they cannot be made so through better control of priming techniques. Our results do show clearly that semantic priming can be affected by a secondary auditory shadowing task. Since the PET data do not show that repetition of meaningful single words activates the semantic area, the two tasks may share only the anterior attentional system. The present data show only that semantic priming is reduced by shadowing under some conditions and suggest that the reduction is, as the PET data would predict, mediated by the shared attention system. This last point is supported by the finding that shadowing a meaningful story produced no greater interference on a lexical decision task than shadowing nonsense. There does appear to be a portion of the semantic priming effect that is immune to attentional interference (Experiments 5 and 6). The cognitive literature suggests that this portion may reflect the automatic activation often reported after very short prime-target intervals. A number of tasks are available to pursue the issue of automatic activation. Moreover, the PET data suggest auditory tasks that involve semantic classification do activate the semantic area. The study of the relationship between the non-attentional components of semantic priming and the anterior semantic system through interference in a dual task paradigm remains a promising area for future research. The study advances our goal of developing joint constraints from cognitive and anatomical studies. The operation of the ventral occipital lobe in obtaining the visual word form appears to be automatic. However, this is clearly not the case for all operations performed in this area. While single foveally-centered words can be reported by parietal patients, they have great difficulty in visual search and nonword reports. Thus the operations that take place within a given area can be either automatic or attended. The use of cueing and divided attention techniques can clarify this issue. The close relationship between the anterior attention system and the semantic system (see Fig. 1) seems to us to be of particular importance. We have argued elsewhere that difficulties in the anterior attention system can lead to bizarre abnormalities in thought and language found in schizophrenia (Early, Posner & Reiman, submitted). A closer look at the types of operations that can be computated automatically within this system and those that require attention may be fundamental to an understanding of higher level disturbances of cognition. #### Figure Caption A summary of data from PET studies of visual and auditory words (Petersen, et al, 1988). The areas on the lateral portions of the cortex (a) and on the medial portion (b) that are involved in visual word forms (triangles), semantic analysis (circles), anterior attention (squares), or posterior attention (hexagons). For lateralized activation solid indicates left hemisphere and open indicates right hemisphere. The hemisphere of midline activations is not known. The areas thought to be activated by repeating auditory words (shadowing) are surrounded by a dotted area. This research was supported in part by the Office of Naval Research by Contract N-00014-86-0289 and by the McDonnell Center for Higher Brain Function. Portions of these studies were presented to the Psychonomics Society, November, 1987. Table 1 Mean Reaction Times (msec) for Identity and Unrelated Pairs | | Identity | Unrelated | Priming
Unrelated-Identity | | | |---------|----------|-----------|-------------------------------|--|--| | Focal | 641 | 693 | 52 | | | | Divided | 667 | 738 | 71 | | | Table 2 Amount of visual priming (msec) as a function of type of task and the presence of nonword primes. #### Identity | | Le | Semantic Class | | | |---------|---------------------------|----------------------------|-------------------------------|---------------------------| | | words
only
(Exp. 2) | words
mixed
(Exp. 3) | nonwords
mixed
(Exp. 3) | words
only
(Exp. 6) | | Focal | 54 | 54 | 7 | 87 | | Divided | 84 | 81 | 20 | 76 | Table 3 Visual priming (msec) as a function of the type of secondary task No Task Shadow Story Shadow Nonsense Table 4 Mean RT (msec) as a function of cue and attention conditions Valid Trials Invalid Trials Validity Effect Invalid-Valid Visual Field of Target 100 millisec* Left Right Left Right Focus 353 349 397 391 42 22 441 459 479 Divided 452 Increased RT from Dual Task 99 92 88 800 millisec* Focus 304 304 334 333 30 430 438 29 Divided 401 409 Increased RT 96 105 97 105 from Dual Task ^{*} Cue to Target Interval Table 5 Mean of the median RTs in millisec for targets following various types of primes for focal and divided attention conditions | | High | Low | Good | Poor | | |---------|--------|--------|----------|----------|-----------| | | Assoc. | Assoc. | Instance | Instance | Unrelated | | | | | | | | | Focal | 608 | 628 | 653 | 691 | 693 | | | | | | | | | Divided | 690 | 712 | 745 | 773 | 738 | Table 6 X COCCOSCIO CONTRACTO POCCOCCO Survey of Prime Conditions in Six Priming Experiments # Visual Semantic Unrelated Total % Rel Exp. #Ss Intervals Trials Primes Primes Primes Primes Lex. Dec. Lex. Dec. 30* Lex. Dec. Lex. Dec. Lex Dec. Semantic Class. ^{*} In addition, there were 16 nonword visual identity primes and 14 nonword primes that were not visually identical. Table 7 ### Amount of semantic priming (msec) in six experiments for focal and divided attention conditions. | Exp. | Task | • | on | | |------|------|-------|--------------|-----------------| | | | Focal | Shadow Story | Shadow Nonsense | | 1. | | 48* | 6*** | | | 2. | | 39* | 13 | | | 3. | | 20** | 21 | -6*** | | 4. | | 23* | 13 | 26 | | 5. | | 17* | 19 | 22 | | 6. | | 19 | 13 | | Signifies a significant semantic priming effect in the focal condition ^{**} Significant interaction between priming and attention condition ^{***} Signifies a significant reduction in the amount of priming under the specified divided attention condition #### References - Battig, W.F. & Montague, W.E. (1969) Category norms for verbal items in 56 categories. J. Exp. Psychol. Monogr. 80, 1-46. - Early, T.S., Posner, M.I. & Reiman, E.M. Hyperactivity of the left striato-pallidal projection: An integrated model of multileveled pathology in schizophrenia. Submitted. - Friedrich, F.J., Walker, J.A. & Posner, M.I. Effects of parietal lesions on visual matching: Implications for reading errors. Cog. Neuropsychol. 1985, 2:250-264. - Goldman-Rakic, P.S. Topography of cognition: Parallel distributed networks in primate association cortex. Ann. Rev. Psychol. 1988, 11:137-156. - James, C.T. (1975) The role of semantic information in lexical decisions. J. Exp. Psychol.: Human Percept. & Perf. 1, 130-136. - Kinsbourne, M. & Hicks, H.E. Functional cerebral space: a model for overflow, transfer and interference effects in human performance. In J. Requin (ed.) Attention and Peformance VII, 1978. - Kucera, H. & Francis, W.N. (1967) Computational analysis of present-day American English. Providence, R.I.:Brown University Press. - Neely, J.H. (1977) Semantic priming and retrieval from lexical memory. J. Exp. Psychol.: General, 106, 226-254. - Neely, J., Keele, D. & Ross, K. (1986) Retrospective postlexical processes produce the proportion effect in semantic priming. Paper to Psychonomics Society, New Orleans. - Palermo, D.J. & Jenkins, J.J. (1964) Word association norms grade school through college. Minneapolis, MN:University of Minnesota Press. - Petersen, S.E., Fox, P.T.,
Posner, M.I., Mintun, M. & Raichle, M.E. (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331:585-589. - Petersen, S.E., Fox, P.T., Miezin, F.M. & Raichle, M.E. (1988) Modulation of cortical visual responses by direction of spatial attention measured by PET. ARVO. - Posner, M.I. Chronometric Explorations of Mind. Hillsdale, N.J.:Lawrence Erlbaum Associates, 1978. - Posner, M.I. Cumulative development of attentional theory. American Psychologist, 1982, 32:53-64. - Posner, M.I., Early, T.S., Reiman, E.M., Pardo, P.J. & Dhawan, M. (1988) Asymmetries in hemispheric control of attention in schizophrenia. Archives of General Psychiatry, in press. - Posner, M.I., Inhoff, A., Friedrich, F.J. & Cohen, A. Isolating attentional systems: a cognitive-anatomical analysis. Psychobiology, 1987, 15, 107-121. - Posner, M.I., Petersen, S.E., Fox, P.T. & Raichle, M.E. Localization of cognitive operations in the human brain. Science, in press. - Posner, M.I. & Presti, D. Selective attention and cognitive control. Trends in Neuroscience, 1987, 10, 12-17. - Posner, M.I. & Snyder, C.R.R. Facilitation and inhibition in the processing of signals. Attention & Performance V. New York: Academic Press, 1975, 669-681. - Posner, M.I., Walker, J.A., Friedrich, F.J. & Rafal, R.D. How do the parietal lobes direct covert attention? Neuropsychologia, 1987, 25A, 135-146. - Ratcliff, R. & McKoon, G. A retrieval theory of priming in memory. Psychol. Rev., in press. - Rayner, K. & Pollatsek, A. (1987) Eye movements in reading: a tutorial review. In Coltheart, M. (ed.) Attention and Performance XII, Hillsdale N.J.: Erlbaum. - Rugg, M.D. (1987) Dissociation of semantic priming, word and nonword repetition effects by event-related potentials. Quart. J. Exp. Psychol., 39A, 123-148. - Sieroff, E. & Posner, M.I. (1988) Cueing spatial attention during processing of words and letter strings in normals. Cognitive Neuropsychology, in press. - Sieroff, E., Pollatsek, A. & Posner, M.I. (1988) Recognition of visual letter strings following injury to the posterior visual spatial attention system. Cognitive Neuropsychology, in press. # (WASHINGTON UNIVERSITY/POSNER) 1988/JULY essession velseess with the property sections. The property was and a least sections. ## Distribution List | | DR. LEON COOPER
BROWN UNIVERSITY
CENTER FOR NEURAL SCI.
PROVIDENCE, RI 02912 | | DR. HAROLD HAWKINS
ONR - CODE 11APT
800 N. QUINCY ST.
ARLINGTON, VA
22217-5000 | PROF. JOHN R. HAYES
CARNEGIE-MELLON UNIV.
DEPT. OF PSYCHOLOGY
SCHENLEY PARK
PITTSBURGH, PA 15213 | DR. JOAN I. HELLER
SOS HADDON ROAD
OAKLAND, CA 94606 | DR. STEPHANIE DOAN
CODE 6011
NAVAL AIR DEV. CTR.
WARNINSTER, PA
18974-5000 | DR. EMANUEL DONCHIN
UNIY. OF ILLINOIS
DEPT. OF PSYCHOLOGY
CHAMPAIGN, IL 61810 | MR. RALPH DUSEK
ARD COPORATION
SAST TWINS KNOLLS RD.
SUITE 400
COLUMBIA, MD 11045 | DR. FORD EBNER
BROWN UNIV. MED. SCHOOL
ANATOMY DEPT.
PROVIDENCE, RI 03913 | DR. JEFFREY ELMAN
UCSD
DEPT. OF LING. C-008
LA JOLLA, CA 92093 | |---|---|--|--|--|---|--|---|--|---|---| | | DR. PAT CARPENTER
CARNEGIE-MELLON UNIV.
DEPT. OF PSYCHOLOGY
PITTSBURGH, PA 15213 | DR. WAYNE GRAY
ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333 | DA. BERT GREEN
JOHNS HOPKINS UNIVERSITY
DEPT. OF PSYCHOLOGY
CHARLES & JATH ST.
BALTIMORE, MD 21218 | DR. JAMES G. GREENO
UNIVERSITY OF CALIF.
BERKELEY, CA 94720 | DR. WILLIAM GREENOUGH
UNIY. OF ILLINOIS
DEPT. OF PSYCHOLOGY
CHAMPAIGN, IL 61820 | DR. STEPHEN GROSSBERG
CTR. FOR ADAPT. SYSTEMS
ROOM 144, BOSTON UNIV.
111 CUMMINGTON STREET
BOSTON, MA 02315 | DR. HENRY M. HALFF
HALFF RESOURCES, INC.
4918 33RD ROAD, NORTH
ARLINGTON, VA 22207 | DR. NANCY F. HALFF
HALFF RESOURCIS, INC.
4918 33RD ROAD, NORTH
ARLINGTON, VA 22207 | DR. MUHAMMAD K. HABIB
UNIV. OF NORTH CAROLINA
DEPT. OF BIOSTATISTICS
CHAPEL HILL, NC 27514 | PROF. EDWARD HAERTEL
SCHOOL OF EDUCATION
STANFORD UNIVERSITY
STANFORD, CA 9430S | | | DR. GARY ASTON-JONES
DEPT. OF BIOLOGY, NYU
1009 MAIN BLDG.
WASHINGTON SQUARE
NEW YORK, NY 10003 | DR. LYNN A. COOPER
LEARNING R&D CENTER
UNIV. OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213 | PHIL CUNNIFF
COMMANDING OFFICER
CODE 7513, NAVAL UNDERSEA
WARFARE ENGINEERING
KEYPORT, WA 98345 | BRIAN DALLMAN
3400 TTWITTGXS
LOWRY AFB, CO 30230-5000 | LT. JOHN DEATON
ONR CODE 125
800 N. QUINCY STREET
ARLINGTON, VA 22217-5000 | DR. STANLEY DEUTSCH
COMMITTEE ON HUMAN FACTORS
NAT'L. ACAD. OF SCIENCE
2101 CONSTITUTION AVE.
WASHINGTON, DC 20418 | DR. R. K. DISMUKES
ASSOC. DIR. FOR LIFE SCI.
AFOSR
BOLLING AFB
WASHINGTON, DC 20332 | DR. DANIEL GOPHER
IND. ENG. A MANAGEMENT
TECHNION
HAIFA 31000
ISRAEL | DR. SHERRIE GOTT
AFHRLIMODJ
BROOKS AFB, TX 18335 | JORDAN GRAFMAN, PH.D.
2021 LYTTONSVILLE ROAD
SILVER SPRING, MD 20910 | | • | DR. TYRONE CASHMAN
AMER. SOC. OF CYBERNETICS
3428 FREMONT AVE. SOUTH
MINNEAPOLIS, MN 55408 | DR. ALPHONSE CHAPANIS
8415 BELLONA LANE
SUITE 210-BUXTON TOWERS
BALTIMORE, MD 21204 | DR. PAUL R. CHATELIER
OUSDRE
PENTAGON
WASH. D.C. 20350-2000 | MR. RAYMOND E. CHRISTEL
AFHRLMOE
BROOKS AFB, TX 78235 | DR. DAVID E. CLEMENT
DEPT. OF PSYCHOLOGY
UNIY. OF SOUTH CAROLINA
COLUMBIA, SC 29208 | DR. CHARLES CLIFTON
TOBIN HALL
DEPT, OF PSYCHOLOGY
UNIV. OF MASSACHUSETTS
AMHERST, MA 01003 | ASST. CHIEF OF STAFF FOR
RES., DEV., TEST & EVAL.
NAVAL EDUC. & TR. COM. (N·S)
NAS PENSACOLA, FL 33508 | DR. MICHAEL COLES
UNIY. OF ILLINOIS
DEPT. OF PSYCHOLOGY
CHAMPAIGN, IL 61830 | DR. ALLAN M. COLLINS
BOLT BERANEK & NEWALAN, INC.
SO MOULTON STREET
CAMBRIDGE, MA 02138 | DR. STANLEY COLLYER
OFFICE OF NAVAL TECH.
CODE 222
800 N. QUINCY ST.
ARLINGTON, VA 22217-5000 | | | DR. ALAN BADDELET · MRC
APPLIED PSYCHOLOGY UNIT
15 CHAUCER ROAD
CAMBRIDGE CB1 1EF
ENGLAND | DR. JAMES BALLAS
GEORGETOWN UNIVERSITY
DEPARTMENT OF PSYCHOLOGY
WASHINGTON, D.C. 20057 | DR. HAROLD BAMFORD
NAT. SCIENCE FDN.
1800 G STREET, N.W.
WASHINGTON, D.C. 20550 | DR. ISAAC BEJAR
EDUCATIONAL TESTING
SERVICE
PRINCETON, NJ 08450 | DR. ALVAH BITTNER
NAVAL BIODYNAMICS LAB.
NEW ORLEANS, LA 70189 | DR. JOHN BLAHA
DEPT. OF PSYCHOLOGY
GEORGE MASON UNIV.
4400 UNIVERSITY DRIVE
FAIRFAX, VA 12030 | SUE BOGNER, ARAIY RES. INST.
ATTN: PERISF
SOI EISENIOWER AV.
ALEXANDRIA, VA 21333-5600 | DR. GORDON H. BOWER
DEPT. OF PSYCHOLOGY
STANFORD UNIVERSTY
STANFORD, CA 94306 | MR. DONALD C. BURGY
GENERAL PHYSICS CORP.
10650 HICKORY RIDGE RD.
COLUMBIA, MD 21044 | DR. GAIL CARPENTER
NORTHEASTERN UNIV.
DEPT. OF MATH, SO4LA
360 HUNTINGTON AVENUE
BOSTON, MA 02115 | | | DR. PHILLIP L. ACKERMAN
UNIVERSITY OF MINNESOTA
DEFARTMENT OF PSYCHOLOGY
AIINNEAPOLLS, MIN 55455 | DR. BETH ADELSON
DEPT. OF COMP. SCIENCE
TUFTS UNIVERSITY
MEDFORD, MA 02155 | TECHNICAL DIRECTOR, ARMY HUMAN ENG. LAB ABERDEEN PROVING GROUND MD 11005 | DR. ROBERT AHLERS
CODE N711
HUMAN FACTORS LABORATORY
NAVAL TRAINING SYSTEMS CTR.
ORLANDO, FL 31313 | DR. JOHN ALLEN
DEPARTMENT OF PSYCHOLOGY
GEORGE MASON UNIVERSITY
4400 UNIVERSITY DRIVE
FAIRFAX, VA 22030 | DR. EARL A. ALLUISI
HQ AFIRL (AFSC)
BROOKS, AFB TX 78335 | DR. JAMES ANDERSON
BRC'HN UNIVERSITY
CENTER FOR NEURAL SCI.
PROVIDENCE, RI 02912 | DR. NANCY S. ANDERSON
DEPT. OF PSYCHOLOGY
UNIYERSITY OF MARYLAND
COLLEGE PARK, MD 20742 | DR. ED AIKEN
NAVY PERSONNEL RAD CENTER
SAN DIEGO, CA 92152-6800 | TECHNICAL DIRECTOR, ARI
S001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333 | | DR. RUTH KANFER
UNIV. OF MN - ELJJOTT HALL
DEPT. OF PSYCHOLOGY
75 E. RIVER ROAD
MINNEAPOLIS, MN 55455
DR. MILTON S. KATZ
ARMY RES. INST. | SOOI EISENHOWER AVE. ALEXANDRIA, VA 21333 DR. DEMETRIOS KARIS GRUMMAN AEROSPACE CORP. MS CO4-14 BETHPAGE, NY 11714 | DR. CLAYTON LEWIS
UNIY. OF COLORADO
DEPT. OF COMP. SCI.
CAMPUS BOX 430
BOULDER, CO 80309 | DR. BOB LLOYD
DEPT. OF GEOGRAPHY
UNIY. OF S. CAROLINA
COLUMBIA, SC 29308 | DR. FREDERIC M. LORD
EDUC. TESTING SERV.
PRINCETON, NJ 04541 | DR. GARY LYNCH
UNIY. OF CALIFORNIA
CTR. FOR THE NEUROBIOLOGY
OF LEARNING & MEHORY
IRVINE, CA 92717 | DR. DON LYON
P.O. BOX 44
HIGLEY, AZ 85336 | DR. WILLIAM L. HALOY
CHIEF OF NAVAL ED. 4 TR.
NAVAL AIR STATION
PENSACOLA, FL 33508 | DR. EVANS MANDES
DEPT. OF PSYCHOLOGY
GEORGE MASON UNIVERSITY
400 UNIVERSITY DR.
FALRFAX, VA 12030 | |--
--|--|---|---|--|--|--|---| | DR. EARL HUNT DEPT. OF PSYCHOLOGY UNIV. OF WASHINGTON SEATTLE, WA 98105 DR. ED HUTCHINS, UCSD INTELLIGENT SYSTMS GROUP | INST. FOR COG. SCI (COIS) LA JOLLA, CA 92093 DR. ALICE ISEN DEPT. OF FSYCHOLGOY UNIV. OF MARYLAND CATONSVILLE, MD 21228 | DR. DAVID KRANTZ
2 WASHINGTON SQ. VILLAGE
APT. Ø15J
NEW YORK, NY 10012 | DR. DAVID R. LAMBERT
NAVAL OCEAN SYS. CTR.
CODE 4117
271 CATALINA BLVD.
SAN DIEGO, CA 92153-6800 | DR. PAT LANGLEY
UNIV. OF CALIFORNIA
DEPT. OF INFO. & COMP. SCI.
IRVINE, CA 97117 | DR. MARCY LANSMAN
UNIY. OF N. CAROLINA
THE L.L. THURSTONE LAB.
DAVIE HALL 013A
CHAPEL HILL, NC 27514 | DR. JILL LARKIN
CARNEGIE-MELLON UNIV.
DEPARTMENT OF PSYCHOLOGY
PITYSBURGH, PA 15313 | DR. ROBERT LAWLER
INFORMATION SCIENCES, FRL
GTE LABORATORIES, INC.
40 SYLVAN ROAD
WALTHAM, MA 02254 | | | DR. LEE GILES AFOSR WASHINGTON, DC 20332 DR. EUGENE E. GLOYE | DASADENA, CA 91106-3485 PASADENA, CA 91106-3485 DR. JOSEPH GOGUEN COMP. SCI. LABORATORY SRI INTERNATIONAL 333 RAVENSWOOD AVE. MENLO PARK, CA 94035 | DR. LLOYD HUMPHREYS
UNIV. OF ILLINOIS
DEPT. OF PSYCHOLGOY
603 E. DANIEL STREET
CHAMPAIGN, IL 61830 | DR. WENDY KELLOGG
IBH T.J. WATSON RES. CTR.
P.O. BOX 218
YORKTOWN HTS., NY 10598 | DR. STEVEN W. KEELE
DEPT. OF PSYCHOLOGY
UNIVERSITY OF OREGON
EUGENE, OR 97403 | | DR. DENNIS KIBLER
UNIV. OF CALIFORNIA
DEPT. OF INFO. & COMP. SCI. ·
IRVINE, CA 92717 | DR. DAVID KIERAS
UNIV. OF MICH. TECH. COMM.
COLLEGE OF ENGINEERING
1133 E. ENGINEERING BLDG.
ANN ARBOR, MI 48109 | DR. DAVID KLAHR
CARNEGIE-MELLON UNIV.
DEPARTMENT OF PSYCHOLOGY
SCHENIEY PARK
PITTSBURGH, PA 15113 | | DR. WILLIAM EPSTEIN
UNIV. OF WISCONSIN
BROGDEN PSYCH. BLDG.
1203 W. JOHNSON ST.
MADISON, WI 53706
DR. K. ANDERS ERICSSON
UNIV. OF COLORADO | DEPT. OF PSYCHOLOGY BOULDER, CO 80309 COL DENNIS W. JARVI COMMANDER AFHRL BROOKS, AFB 78235-5601 | DR. JOSEPH E. JOHNSON
ASST. DEAN-GRAD. STUDIES
COLLEGE OF SCI. A MATH
UNIV. OF SOUTH CAROLINA
COLUMBIA, SC 19108 | CDR TOM JONES
ONR CODE 125
800 N. QUINCY ST.
ARLINGTON, VA 22217-5000 | MR. DANIEL B. JONES
US NUCLEAR REG. COMM.
DIV. OF HUMAN FACTORS
SAFETY
WASHINGTON, DC 10555 | DR. DOUGLAS H. JONES
THATCHER JONES ASSOC.
P.O. BOX 6640
10 TRAFALCAR COURT
LAWRENCEVILLE, NY 08648 | DR. JANE JORGENSEN
UNIVERSITY OF OSLO
INST. OF PSYCHOLOGY
BOX 1094, BLINDERN
OSLO, NORWAY | DR. MARCEL JUST
CARNEGIE-MELLON UNIV.
DEPT. OF PSYCHOLOGY
SCHENLEY PARK
PITTSBUGH, PA IS333 | DR. DANIEL KAHNEMAN
UNIV. OF BR. COLPSYCH.
#154-2053 MAIN MALL
VANCOUVER, BR. COLUMBIA
CANADA Y6T 1X7 | | DR. RONALD HAMBLETON
PROF. OF EDUC. & PSYCH.
UNIV. OF MASS AMHERST
HILLS HOUSE
AMHERST, MA 01003
DR. CHERYL HAMEL | ORLANDO, FL 33813 ORLANDO, FL 33813 DR. P. HELMERSEN UNIVERSITY OF OSLO DEPT. OF PSYCHOLOGY BOX 1094 OSLO 3, NORWAY | DR. STEVEN HILLYARD
DEPT. OF NEUROSCI.
UCSD
LA JOLLA, CA 92093 | DR. GEOFFREY HINTON
COMP. SCIENCE DEPT.
UNIV. OF TORONTO
10 KINGS COLLEGE RD.
TORONTO, CANADA MSS 1AA | DR. JIM HOLLAN
INTELLIGENCE SYSTEMS GRP.
INST. FOR COG. SCIENCE
UCSD
LA JOLLA, CA 92093 | DR. JOHN HOLLAND
UNIV. OF MICHIGAN
2313 EAST ENGINEERING
ANN ARBOR, MI 48109 | DR. MELISSA HOLLAND
ARMY RES. INST. FOR THE
BEH. & SOCIAL SCIENCES
SOOI EISENHOWER AVENUE
ALEXANDRIA, VA 22333 | DR. JAMES HOWARD DEPT. OF PSYCHOLOGY HUMAN PERFORMANCE LAB. CATHOLIC UNIV. OF AMERICA WASHINGTON, DC 20064 | DR. KEITH HOLYOAK
UNIV. OF MICHIGAN
HUMAN PERFORMANCE CTR.
330 PACKARD ROAD
ANN ARBOR, MI 48109 | | DR. RICHARD H. GRANGER
DEPT. OF COMP. SCIENCE
UNIY. CALIF. AT IRVINE
IRVINE, CA 92717
DR. STEVEN GRANT
DEPT. OF BIOLOGY. NYU | 1009 MAIN BUILDING WASHINGTON SQUARE NEW YORK NY 10003 DR. JEROME FELDMAN UNIVERSITY OF ROCHESTER COMP. SCIENCE DEPT. ROCHESTER, NY 14627 | DR. PAUL FELTOVICH
SIU SCH. OF MEDICINE
MED. EDUC. DEPT.
P.O. BOX 3926
SPRINGFIELD, IL 63708 | DR. CRAIG I. FIELDS
ARPA
1400 WILSON BLVD.
ARLINGTON, VA 22209 | DR. GAIL FLEISCHAKER
MARGULIS LAB
BIOLOGICAL SCI. CTR.
2 CUMMINGTON STREET
BOSTON, MA 02215 | DR. JANE M. FLINN DEPT. OF PSYCHOLOGY GEORGE MASON UNIV. 4400 UNIVERSITY DRIVE FAIRFAX, VA 22030 | DR. MICHEL GALLAGHER
UNIV. OF NORTH CAROLINA
DEPT. OF PSYCHOLOGY
CHAPEL HILL, NC 27514 | DR. R. EDWARD GEISELMAN
DEPT. OF PSYCHOLOGY
UNIV. OF CALIFORNIA
LOS ANGELES, CA 90014 | DR. DON GENTNER
CENTER FOR HUMAN
INFORMATION PROCESSING
UNIVERSITY OF CALIFORNIA
LA JOLLA, CA 92093 | | DAJRA PAULSON
CODE S3-TRAINING SYSTEMS
NAVY PERSONNEL R&D CTR.
SAN DIEGO, CA 92153-6800 | DR. HAROLD F. O'WEIL, JR. SCHOOL OF EDUC. WPH 801 DEPT. OF EDUC., PSYCH. & TECHNOLOGY, USC LOS ANGELES, CA 90089-0031 | DR. MICHAEL OBERLIN
NAVAL TRAINING SYS. CTR.
CODE 711
ORLANDO, FL 33813-7100 | DR. STELLAN OHLSSON
LEARNING R&D CTR.
UNIV. OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15313 | DIR., RES. PROG., ONR
800 NORTH QUINCY ST.
ARLINGTON, VA 11117-5000 | MR. RAYMOND C. SIDORSKY
ARMY RESEARCH INST.
5001 EISENHOWER AVE.
ALEXANDRIA, VA 22333 | DR. HERBERT A. SIMON DEPT. OF PSYCHOLOGY CARNEGIE-MELLON UNIY. SCHENIEY PARK PITYSBURGH, PA 15313 | DR. ZITA M. SIMUTIS
INSTRUCTIONAL TECH.
SYSTEMS AREA, ARI
SOOI EISENHOWER ST.
ALEKANDRIA, VA 11133 | DR. H. WALLACE SINAIKO MANPOWER RES. A. ADV. SERV. SMITHSONIAN INSTITUTE 801 N. PITT STREET ALEKANDRIA, VA 22314 | DR. DEREK SLEMAN
STANFORD UNIVERSITY
SCHOOL OF EDUCATION
STANFORD, CA 94305 | |--|---|--|--|--|--|---|---|--|--| | DR. TOM MORAN
XEROX PARC
3333 COYOTE HILL ROAD
PALO ALTO, CA 94304 | MR. MELVIN D. MONTEMERLO
NASA HEADQUARTERS
RTE-6
WASHINGTON, DC 20546 | DR. WILLIAM MONTAGUE
NPRDC CODE 13
SAN DIEGO, CA 92153-6800 | ONR, CODE 1141PT
800 N. QUINCY STREET
ARLINGTON, VA 22217-5000
(6 COPIES) | DR. JESSE ORLANSKY
INST. FOR DEFENSE ANALYSIS
1801 N. BEAUREGARD ST.
ALEXANDRIA, VA 23311 | DR. MARTHA POLSON
DEPT. OF PSYCHOLOGY
CAMPUS BOX 346
UNIVERSITY OF COLORADO
BOULDER, CO 80309 | DR. STEVEN E. POLTROCK
MCC
9430 RESEARCH BLVD.
ECHELON BLDG. #1
AUSTIN, TX 78759-4509 | DR. LAUREN RESNICK
LEARNING RAD CENTER
UNIV. OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213 | DR. FRED REIF
PHYSICS DEPARTMENT
UNIV. OF CALIFORNIA
BERKELEY, CA 9470 | DR. JAMES A. REGGIA
UNIV. OF MD SCH. OF MED.
DEPARTMENT OF NEUROLOGY
23 S. GREENE STREET
BALTIMORE, MD 21201 | | DIRECTOR, TRAINING LAB.
NPRDC (CODE 05)
SAN DIEGO, CA 92153-4800 | DIR. HUMAN FACTORS & 4 ORCANIZATIONAL SYS. LAB NPRDC (CODE 07) SAN DIEGO, CA 92152-6800 | FLEET SUPPORT OFFICE,
NPRDC (CODE 301)
SAN DIEGO, CA 92152-6800 | COMMANDING OFFICER
NAVAL RES. LAB.
CODE みらみり
WASHINGTON, DC 20390 | DR. JAMES L. MCGAUGH
CTR. FOR VEUROBIOLOGY OF
LEARNING & MEMORY
IRVINE, CA 92717 | ONR, CODE 1133
800 N. QUINCY STREET
ARLINGTON, VA 22217-5000 | MATHEMATICS GROUP, ONR
CODE IIIMA
800 NORTH QUINCY ST.
ARLINGTON, VA 12217-5000 | ONR - CODE 1141NP
800 N. QUINCY STREET
ARLINGTON, VA 22217-5000 | ONR, CODE 1142
BDO N. QUINCY ST.
ARLINGTON, VA 22217-5000 | ONR, CODE 1141EP
800 N. QUINCY STREET
ARLINGTON, VA 22217-5000 | | DR. SANDRA P. MARSHALL
DEPT. OF PSYCHOLOGY
SAN DIEGO STATE UNIV.
SAN DIEGO, CA 93182 | DR. RICHARD E. MAYER
DEPT. OF PSYCHOLOGY
UNIY. OF CALIFORNIA
SANTA BARBARA, CA 93106 | JAMES MCBRIDE, PSYCII. CORP
CIO HARCOURT, BRACE,
JAVANOVICH, INC.
1350 WEST 6TH STREET
SAN DEIGO, CA 93101 | IN. JAY MCCLELLAND
DEPT. OF PSYCHOLOGY
CARNEGIE-MELLON UNIV.
PITTSBURGH, PA 15313 | SPEC. ASST. FOR MARINE
CORP MATTERS
ONR CODE OOMC
600 N.
QUINCY ST.
ARLINGTON, VA 22217-5000 | DR. GLEN OSGA
NOSC, CODE 411
SAN DIEGO, CA 91153-6800 | DR. JUDITH ORASANU
ARMY RESEARCH INST.
SOOI EISENHOWER AVE.
ALEXANDRIA, VA 22333 | DR. ROBERT F. PASNAK
DEPT. OF PSYCHOLOGY
GEORGE MASON UNIV.
4400 UNIVERSITY DRIVE
FAIRFAX, VA 21030 | "QOF. SEYMOUR PAPERT
1C-109
MIT
CAMBRIDGE, MA 02139 | DIR. TECH. PROGRAMS ONR
CODE 13
800 NORTH QUINCY ST.
ARLINGTON, VA 2217-5000 | | DR. ALAN M. LESGOLD
LEARNING RAD CENTER
(''V.'.' OF PITTSBURGH
PITTSBURGH, PA 15260 | DR. JIM LEVIN
DEPT. OF EDUC. FSYCH.
210 EDUCATION BUILDING
1310 SOUTH SIXTH STREET
CHAMPAIGN, IL 61820-6990 | DR. JOHN LEVINE
LEARNING RAD CENTER
UNIV. OF PITTSBUGH
PITTSBURGH, PA 15260 | DR. MICHAEL LEVINE
EDUCATIONAL PSYCHOLOGY
210 EDUCATION BLDG.
UNIVERSITY OF ILLINOIS
CHAMPAIGN, IL 61801 | DR. JAMES MCMICHAEL
ASST. FOR MPT RES., DEV.
AND STUDIES, OP 0187
WASHINGTON, DC 20370 | DR. GAIL MCKOON, CAS/
PSYCHOLOGY, KRESGE #230
NORTHWESTERN UNIV.
1859 SHERIDAN ROAD
EVANSTON, IL 60201 | DR. JOE MCLACHLAN
NAYY PERSONNEL RAD CTR.
SAN DIEGO, CA 92152-6800 | DR. GEORGE A. MILLER
DEPT. OF PSYCHOLOGY
GREEN HALL, PRINCETON
PRINCETON, NJ 08540 | DR. BARBARA MEANS
HUMAN RES. RES. ORG.
1100 SOUTH WASHINGTON
ALEXANDRIA, YA 11314 | DR.ROBERT MISLEVY
EDUCATION TESTING SERV.
PRINCETON, NJ 08541 | | DR. RONALD KNOLL
BELL LABORATORIES
MURRAY HILL, NJ 07974 | DR. SYLVAN KORNBLUM
UNIY. OF MICHIGAN
MENTAL HEALTH RES. INST.
20S WASHTENAW PLACE
ANN ARBOR, MI 48109 | DR. STEPHEN KOSSLYN
HARVARD UNIVERSITY
1336 WILLIAM JAMES HALL
33 KIRKLAND ST.
CAMBRIDGE, MA 02138 | DR. KENNETH KOTOVSKY
DEPT. OF PSYCHOLGGY
COMM. COLLEGE OF ALLEGHENY
800 ALLEGHENY AVENUE
PITSBURGH, PA 15333 | DR. RANDY MUMAW
PROGRAM MANAGER
TRAINING RES. DIVISION
1100 S. WASHINGTON
ALEXANDRIA, VA 22314 | DR. ALLEN MUNRO
BEH. TECHNOLOGY
LABORATORIES - USC
1845 S. ELENA AVE., 4TH FL.
REDONDO BEACH, CA 90277 | DIR., MANPOWER & PERS. LAB.
NPRDC (CODE 06)
SAN DIEGO, CA 92153-6800 | DR. RICHARD NISBETT
UNIY. OF MICHIGAN
INST. FOR SOC. RES.
ROOM S161
ANN ARBOR, MI 48109 | DR. MARY JO NISSEN
UNIY. OF MINNESOTA
N218 ELLIOTT HALL
AIINNEAPOLIS, MN 55455 | DEPUTY TECHNICAL DIRECTOR
NPRDC CODE 01A
SAN DIEGO, CA 92152-6800 | DOZDARZE DOZDZENI ZERRERE BSSSSSI ROBEKSKI DOZDARZEN KRESKES | DR. HOWARD WAINER
DIV. OF PSYCH. &
EDUC. TESTING SERV.
PRINCETON, NJ 08541 | DR. GIL RICARD
MAIL STOP CO4.14
GRUMMAN AEROSP. CORP.
BETHPAGE, NY 11714 | DR. DAVID RUMELHART
CENTER FOR HUMAN
INFORMATION PROC.
UNIV. OF CALIF.
LA JOLLA. CA 82093 | | DR. ANDREW M. ROSE AM. INST. FOR RES. 1055 THOMAS JEFFERSON ST., NW W. SHINGTON, DC 20007 | DR. WM. B. ROUSE
SEARCH TECH, INC.
25-B TECHNOLOGY PKIATL.
W ORCROSS, GA 30092 | DR. E. L. SALTZMAN
HASKINS LABSORATORIES
170 CROWN STREET
NEW HAVEN, CT 06510 | DR. DAVID J. WEISS
N660 ELLIOTT HALL
UNIV. OF MINNESOTA
75 E. RIVER ROAD
MINNEAPOLIS, AN 55455 | DR. JOE YASATUKE
AFHRLILKT
LOWRY AFB, CO 80330 | DR. SHIH SUNG WEN
JACKSON STATE UNIV.
1315 J. R. LYNCH ST.
JACKSON, MS 39117 | |---|--|--|--|--|---|--|---|---|--| | DR.K. TATSUOKA
CERL
153 ENGINEERING RES. LAB.
URBANA, 1L 61801 | DR. MARTIN A. TOLCOTT
3001 VEAZEY TERR., NW
APT. 1817
WASHINGTON, DC 20008 | DR. ROBERT TSUTAKAWA
UNIVERSITY OF MISSOURI
DEPT. OF STATISTICS
323 MATH SCIENCES BLDG.
COLUMBIA, MO 63211 | DR.ZITA E. TYER DEPT. OF PSYCHOLOGY GEORGE MASON UNIVERSITY 4400 UNIVERSITY DRIVE FAIRFAX, VA 11030 | HQ - US MARINES
CODE MPI - 20
WASHINGTON, DC 20380 | DR. AMOS TVERSKY
STANFORD UNIVERSITY
DEPT. OF PSYCHOLOGY
STANFORD, CA 9430S | DR. JAMES TWEEDDALE
TECHNICAL DIRECTOR
NAVY PERSONNEL RAD CTR.
SAN DIEGO, CA 92152-4800 | DR.T.B.SHERIDAN
DEPT. OF MECH.ENG.
MIT
CAMBRIDGE, MA 02139 | DR. HEATHER WILD
NAVAL AIR DEV. CENTER
CODE 6031
WARMINSTER, PA 18974-5000 | DR. JOSEPH L. YOUNG
MEMORY & COG. PROCESSES
NATIONAL SCIENCE FDN.
WASHINGTON, DC 20550 | | DR. KATHRYN SPOEHR
BROWN UNIVERSITY
DEPT. OF PSYCHOLOGY
PROVIDENCE, RI 02913 | DR. ROBERT STERNBERG
DEPT. OF PSYCHOLOGY
YALE UNIVERSITY
BOX 11A, YALE STATION
NEW HAVEN, CT 06530 | JAMES J. STASZEWSKI
CARNEGIE-MELLON UNIVERSITY
DEPT. OF PSYCHOLOGY
SCHENLEY PARK
PITTSBURGH, PA 13313 | DR. DOUGLAS TOWNE
BEHAVIORAL TECH LABS
1845 S. ELENA AVENUE
REDONDO BEACH, CA 90177 | DR. MAURICE TATSUOKA
120 EDUCATION BLDG.
1310 S. SIXTH ST.
CHAMPAIGN, IL 61820 | DR. RICHARD F. THOMPSON
STANFORD UNIVERSITY
DEPT. OF PSYCHOLOGY
BLDG. 4101-JORDAN HALL
STANFORD, CA 9430S | MR. BRAD SYMPSON
NAVY PERSONNEL RAD CTR.
SAN DIEGO, CA 92153-6800 | DR. FUMIKO SAMEJIMA
DEPT. OF PSYCHOLOGY
UNIV. OF TENNESSEE
KNOXYILLE, TN 37916 | DR. DONALD RUBIN
STAT. DEPT., HARVARD
SCIENCE CTR., RM. 608
I OXFORD STREET
CAMBRIDGE, MA 02138 | DR. ERNST Z. ROTHKOPF
AT&T BELL LABORATORIES
ROOM 1D-456
680 MOUNTAIN AVENUE
MURRAY HILL, NJ 07974 | | DR. EDWARD E. SMITH
BOLT BERANEK & NEWMAN, INC.
SO MOULTON STREET
CAMBRIDGE, MA 01138 | DR. ALFRED F. SMODE
SENIOR SCIENTIST
CODE 07A
NAVAL TRAINING SYS. CTR.
ORLANDO, FL 33813 | DR. ROBERT F. SMITH DEFT. OF FSYCHOLOGY GEORGE MASON UNIV. 4400 UNIVERSITY DR. FALRFAX, VA 22030 | DR. LINDA B. SMITH
DEFT. OF PSYCHOLOGY
INDIANA UNIVERSITY
BLOOMINGTON, IN 4740S | DR. RICHARD E. SNOW
DEPT. OF PSYCHOLOGY
STANFORD UNIVERSITY
STANFORD, CA 94306 | DR. TED STEINKE
DEPT. OF GEOGRAPHY
UNIY. OF S. CAROLINA
COLUMBIA, SC 19108 | DR. MICHAEL I. TURVEY
HASKINS LABORATORY
270 CROWN STREET
NEW HAVEN, CT 06510 | DR. DAVID VALE
ASSESSMENT SYSTEMS CORP.
2233 UNIVERSITY AVE.
SUTE 310
ST. PAUL, MN SSI14 | DR. KURT VAN LEHN
CARNEGIE-MELLON UNIV.
DEPT. OF PSYCHOLOGY
SCHENLEY PARK
PITTSBURGH, PA 13313 | DR. JERRY VOGT
NAVY PERSONNEL RAD CTR.
CODE 51
SAN DIEGO, CA 93152-6800 | | DR. LYNNE REDER
DEPT. OF PSYCHOLOGY
CARNEGIE: MELLON UNIY.
SCHENLEY PARK
PITTSBURGH, PA 15313 | DR.MARK D. RECKASE
ACT
P.O. BOX 168
IOWA CITY, IA 52243 | DR. MARY C. POTTER
DEPT. OF PSYCHOLOGY
MIT (E-10-031)
CAMBRIDGE, MA 02139 | DR. JOSEPH PSOTKA
ATTN: PERI-IC
ARMY RESEARCH INST.
SOOI EISENHOWER AVE.
ALEXANDRIA, VA 13333 | DR. KARL PRIBRAM
STANFORD UNIVERSITY
DEPT. OF PSYCHOLOGY
BLDG. 4201 - JORDAN HALL
STANFORD, CA 9430S | DR. DANIEL REISBERG
DEPT. OF PSYCHOLOGY
NEW SCHOOL FOR SOC. RES.
65 FIFTH AYENUE
NEW YORK, NY 10003 | DR. STEVE SUOMI
NIH BLDG. 31
ROOM B18-15
BETHESDA, MD 10105 | DR. H. SWAMINATHAN
LAB. OF PSYCHOMETRIC &
EVALUATION RESEARCH
UNIV OF MASSACHUSETTS
AMHERST, MA 01003 | | DR. JOHN TANGNEY
AFOSRINL
BOLLING AFB, DC 20333 | | DR. JAMES PAULSON
DEPT. OF PSYCHOLOGY
PORTLAND STATE UNIVERSITY
P.D. BOX 751
PORTLAND, OR 97207 | DR. PETER POLSON
UNIVERSITY OF COLORADO
DEPT. OF PSYCHOLOGY
BOULDER, CO 80309 | DR. JAMES W. PELLEGRINO
UC - SANTA BARBARA
DEPT. OF PSYCH,
SANTA BARBARA, CA 93106 | DR. MANCY PENNINGTON
UNIVERSITY OF CHICAGO
GRAD. SCH. OF MED.
1101 E. SSTH ST.
CHICAGO, IL 60637 | DR. RAY PEREZ
ARI (PERI-II)
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333 | DR. STEVEN PINKER
DEPT. OF PSYCHOLOGY
E10-018 MIT
CAMBRIDGE, MA 02139 | DR. SAUL STERNBERG
UNIV. OF PENNSYLVANIA
DEPT. OF PSYCHOLOGY
381S WALNUT STREET
PHILADELPHIA, PA 19104 | DR. ELLIOT SOLOWAY
YALE UNIVERSITY
COMPUTER SCI. DEPT.
P.O. BOX 3158
NEW HAVEN, CT 06330 | DR. ALBERT STEVENS
BOLT BERANEK & NEWMAN, INC.
10 MOULTON ST.
CAMBRIDGE, MA 02238 | DR. PAUL J. STICHA
TRAINING RES. DIV.
HUMRRO
1100 S. WASHUNGTON
ALEXANDRIÅ, VA 33314 | | ERIC FACILITY ACQUISITIONS
4833 RUGBY AVENUE
BET HESDA, MD 20014 | DR. BETH WARREN
BOLT BERANEK A NEWMAN, INC.
50 MOULTON STREET
CAMBRIDGE, MA 01118 | | | | | | | | | |---|--|--|---|--|--
---|---|---|--| | DR. JOEL DAVIS
ONR, CODE 1141NP
800 NORTH QUINCY ST.
ARLINGTON, VA 22217-5000 | DR. HAMS WILLI SCHROIFF
INST. FUER PSYCHOLOGIE
DER RWTH AACHEN
JAGGERSTRASS ZWISCHEN I7 U. 19 | STOU AACHEN, WEST GERMANY | | | | | | | | | DR. JAIME CARBONELL
CARNEGIE MELLON UNIY.
DEPT. OF PSYCHOLOGY
PITTSBURGH, PA 1313 | J. D. FLETCHER
9931 CORSICA STREET
VIENRA, VA 22380 | DR. JOHN R. FREDERIKSEN
BOLT BERANET & NEWMAN
50 MOULTON STREET
CAMBRIDGE, MA 03138 | | | | | | | | | DR. KEITHER WESCOURT
FMC CORPORTAION
CENTRAL ENG. LABS.
1185 COLEMAN AVE., BOX 580
SANTA CLARA, CA 95052 | DR. NORMAN M. WEINBERGER
UNIY. OF CALIF.
CTR. FOR THE NEUROBIOL.
OF LEARNING & MEMORY
IRVINE, CA 97717 | DR. DOUGLAS WETZEL
CODE 12
NAVY PERS. RAD CTR.
SAN DIEGO, CA 92153-6800 | DR. BARBARA WHITE
BOLT BERANEK & NEWMAN, INC.
10 MOULTON ST.
CAMBRIDGE, MA 02238 | DR. BARRY WHITSEL
UNIV. OF NC
DEPT. OF PHYSIOLOGY
MEDICAL SCHOOL
CHAPEL HILL, NC 27514 | DR. CHRISTOPHER WICKENS
DEPT. OF PSYCHOLOGY
UNIY. OF ILLINOIS
CHAMPAIGN, IL 61820 | DR. STEVEN ZORNETZER
ONR, CODE 1140
800 N. QUINCY ST.
ARLINGTON, VA 21217-5000 | DR. MICHAEL I, POSNER
UNIVERSITY OF OREGON
DEPT. OF PSYCHOLOGY
EUGENE, OR 97403 | CAPT. P. MICHAEL CURRAN
ONR, CODE 115
800 N. QUINCY ST.
ARLINGTON, VA 21217-5000 | DR. MARSHALL J. FARR
1510 NORTH VERNON ST.
ARLINGTON, VA 12207 | | DR. ROBERT A. WISHER
U.S. ARMY INST. FOR THE
BEH. & SOC. SCIENCES
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333 | DR. MARTIN F. WISKOFF
NAVY PERSONNEL RÆD CTR.
SAN DIEGO, CA 92152-6800 | MR. JOHN H. WOLFE
NAVY PERSONNEL RAD CTR.
SAN DIEGO, CA 92132-4800 | GEORGE WONG, BIOSTATISTICS
MEMORIAL SLOAN-KETTERING
CANCER CENTER
1275 YORK AVENUE
NEW YORK, NY 100 A.) | DR. DONALD WOODWARD
OFFICE OF NAVAL RESEARCH
CODE 1141NP
800 NORTH Q'JINCY STREET
ARLINGTON, VA 12217-5000 | DR. WALLACE WULFECK, III
NAVY PERS. RAD CENTER
SAN DIEGO, CA 92153-6800 | MR. CARL YORK
SYSTEM DEV, FDN.
181 LYTTON AVENUE
SUITE 210
PALO ALTO, CA 94301 | DR. DAVID NAVON
INST. FOR COGNITIVE SCI.
UNIV. OF CALLFORNIA
LA JOLLA, CA 92093 | DR. ROBERT SASMOR
ARMY RES. INSTITUTE
5001 EISENHOWER AVE.
ALEKANDRIA, VA 22333 | DEFENSE TECH. INFO. CTR.
CAMERON STATION, BLDG. S
ALEXANDRIA, VA 23314
ATTN: TC | | DR. MICHAEL I, SAMET
PERCEPTRONICS, INC.
6371 VARIEL AVENUE
WOODLAND HILLS, CA 91364 | DR. ARTHUR SAMUEL
YALE UNIVERSITY
DEPT. OF PSYCHOLOGY
BOX 11A, YALE STATION
NEW HAVEN, CT 06320 | DR. ROGER SCHANK
YALE UNIVERSITY
COMP. SCI. DEPARTMENT
NEW HAVEN, CT 06520 | DR. WALTER SCHNEIDER
LEARNING RAD CTR.
UNIVERSITY OF PITTSBURCH
3939 O'HARA STREET
PITTSBURCH, PA ISSO | DR. MICHAEL G. SHAFTO
ONR CODE 11 APT
800 N. QUINCY STREET
ARLINGTON, VA 22317-5060 | DR. JANET SCHOFIELD
LEARNING RAD CENTER
UNIV. OF PITTSBURGH
PITTSBUGH, PA 15360 | DR. ROBERT J. SEIDE!.
US ARMY RES. INST.
SOOI EISENHOWER A YE.
ALEXANDRIA, YA 22 133 | CHIEF OF NAVALED. & TR.
LIAISON OFFICE
AIR FORCE HUMAN RES. LAB.
OPERATIONS TRAINING DIV.
WILLIAMS AFB,AZ 85324 | DR. DONALD A. NORMAN
INST. FOR COG. SCI.
UNIV. OF CALIFORNIA
LA JOLLA, CA 92093 | DR. MICHAEL J. IYDA
MAVAL POSTGRADUATE SCHOOL
CODE SICK
MONTERET, CA 93943-5100 | 1)A1 FilMED 1)///